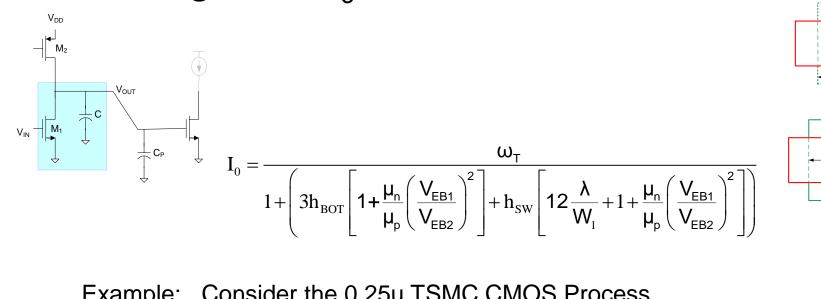

EE 508 Lecture 35

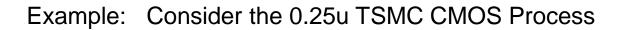
High Frequency Filters

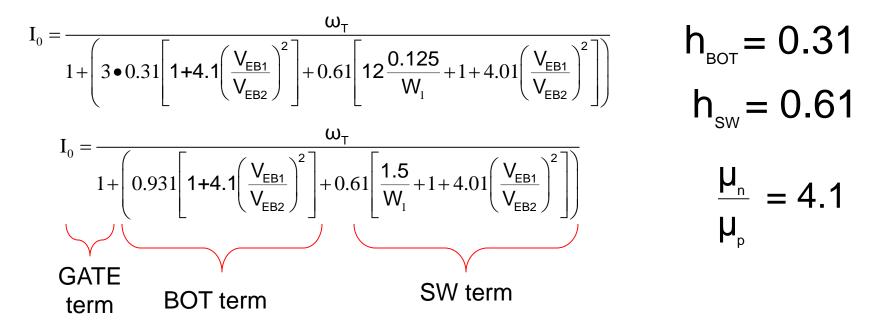
Single-ended High-Frequency TA Integrators

Speed of operation increases with V_{EB}

 V_{EB} is limited by signal swing requirements and V_{DD}

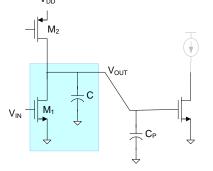

Signal Swing:

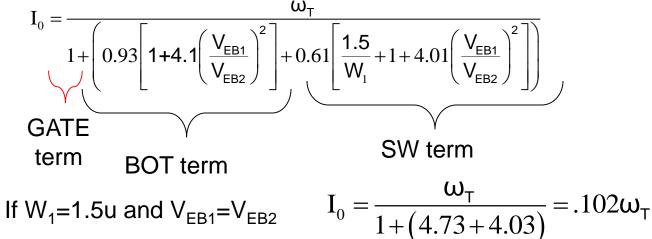

$$V_{DD} - V_{T} - V_{EB} = V_{T} + V_{EB} - (V_{T} + 100 \text{mV})$$
$$V_{EB} = \frac{V_{DD} + 100 \text{mV} - V_{T}}{2}$$
$$I_{OMAX} \cong \frac{\mu (V_{DD} + 100 \text{mV} - V_{T})}{2L_{min}^{2}}$$


Review from last lecture How high can I_0 be?

Consider a basic layout

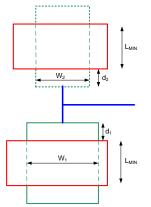
 W_2

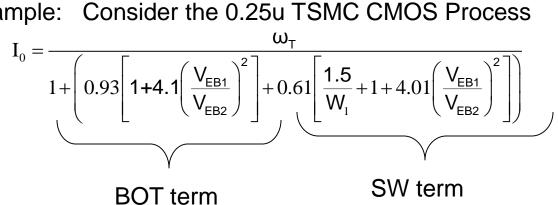




How high can I₀ be?

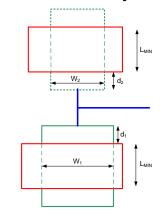
Consider a basic layout

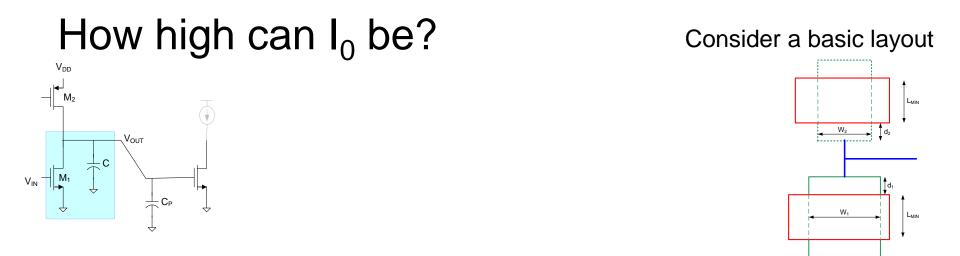



Example: Consider the 0.25u TSMC CMOS Process

- The diffusion capacitance term can dominate the $C_{\rm GS}$ term
- The SW capacitance can be the biggest contributor to the speed limitations
- A factor of 10 or even much more reduction in speed is possible due to the diffusion parasitics and layout

• Maximizing W₁ will minimize I₀ but power will get very large for marginal improvement in speed

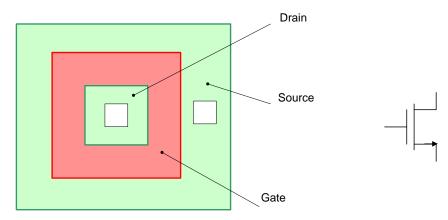

V_{DD} - M2

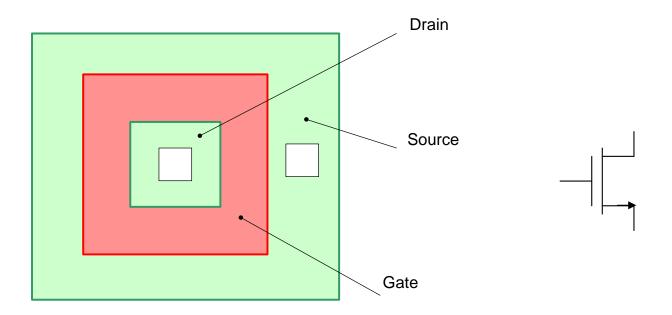

Example: Consider the 0.25u TSMC CMOS Process

This example shows that layout is really critical when high speed operation is needed

What can be done with layout to improve performance?

Consider a basic layout

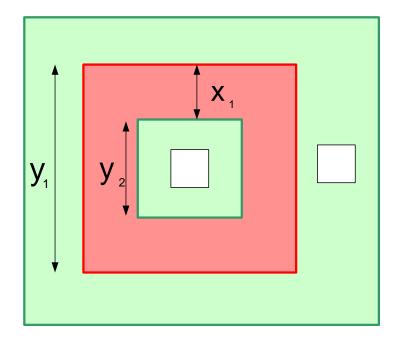



What can be done with layout to improve performance?

Reducing the diffusion capacitances on the drains will have a major impact on speed!

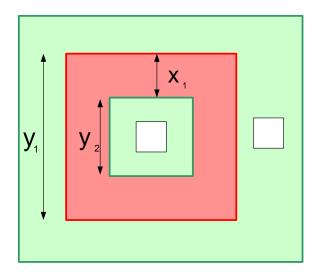
Consider a concentric layout approach:

Concentric Layouts


Can be shown this is equivalent to a rectangular transistor (W_{EQ}/L_{EQ})

Drain area and perimeter dramatically reduced

Source area and perimeter dramatically increased (but does not degrade performance)


Only sidewall is adjacent to the gate and C_{SW} is usually considerably lower here though some models do not provide separate characterization

Concentric Layouts

$$W_{EQ} \cong 4\left(\frac{y_{1}+y_{2}}{2}\right) \quad \text{or} \quad W_{EQ} \cong 4\left(y_{2}+\sqrt{2}\left[\frac{y_{1}-y_{2}}{4}\right]\right)$$
$$L_{EQ} \cong X_{1}$$

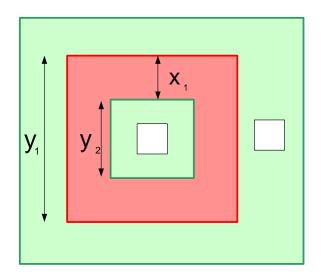
Exact closed-form expressions exist which are somewhat more complicated

Consider concentric layouts for M_1 and M_2

Recall
$$\frac{W_2}{W_1} = \frac{\mu_n}{\mu_p} \left(\frac{V_{_{EB1}}}{V_{_{EB2}}}\right)^2$$

Assume $W_2 > W_1$

Will minimize the diffusion capacitance by starting with a minimumsized concentric device


Thus
$$y_2=6\lambda$$
 $X_1=2\lambda$ $y_1=10\lambda$ $W_{1min} \cong 4\lambda \left(6+\sqrt{2}\right)$

Define K_1 to be the scaling factor of W_1 above that of the minimum-sized concentric device W_1

$$\mathsf{K}_{_{1}} = \frac{\mathsf{VV}_{_{1}}}{\mathsf{W}_{_{1\min}}}$$

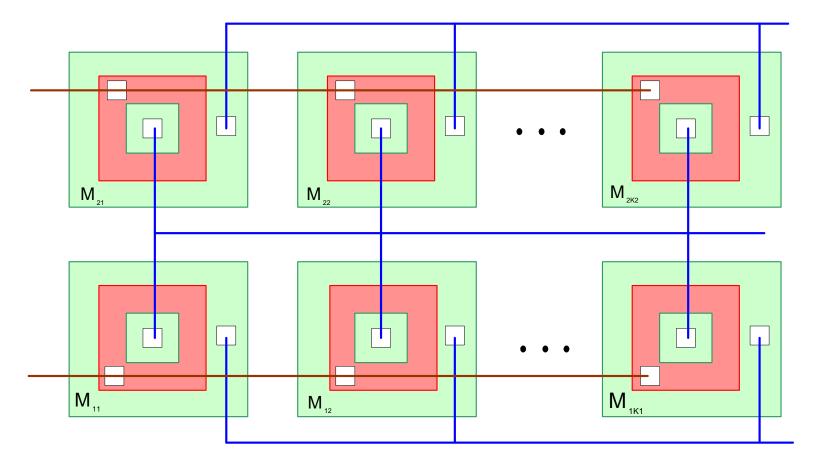
Assume, for convenience, that K is an integer

 M_1 realized by placing K_1 minimum-sized concentric devices in parallel

$$y_{2}=6\lambda \qquad x_{2}=2\lambda \qquad y_{1}=10\lambda$$
$$W_{1\min} \cong 4\lambda \left(6+\sqrt{2}\right)$$
$$K_{1} = \frac{W_{1}}{W_{1\min}}$$

Consider now the concentric layout for M₁

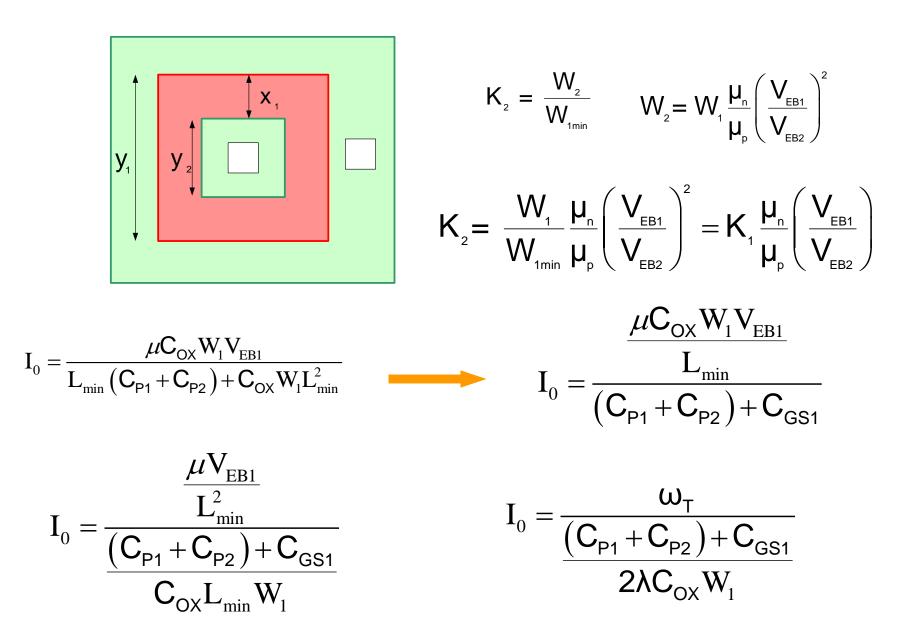
 $P_{D1} = K_1 24\lambda$ $A_{D1} = K_1 (6\lambda)^2$ $A_{GATE1} = K_1 (48\lambda^2 + 16\lambda^2)$

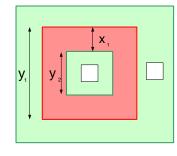

Consider now the concentric layout for M₂

The minimum-sized layout (gate, source, and drain) for the p-channel transistors are identical to those for n-channel transistors

Define K_2 to be the scaling factor for W_2 above that of a minimum-sized concentric device

 $P_{D2} = K_2 24\lambda$ $A_{D2} = K_2 (6\lambda)^2$


Consider concentric layouts for M₁ and M₂

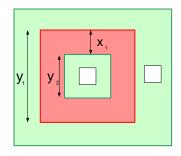

Individual segments can be a little bigger than minimum sized w/o major change in performance

May select K₁=K₂=1

Consider concentric layouts for M₁ and M₂

Consider concentric layouts for M₁ and M₂

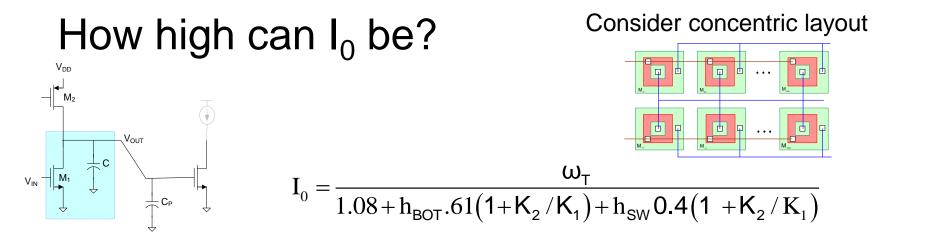
$$I_{0} = \frac{\omega_{T}}{\frac{\left(C_{P1} + C_{P2}\right) + C_{GS1}}{2\lambda C_{OX}W_{1}}}$$

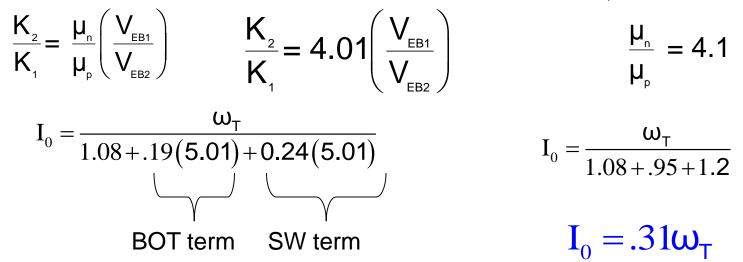

 $P_{D1} = K_1 24\lambda$ $A_{D1} = K_1 (6\lambda)^2$ $A_{GATE1} = K_1 (48\lambda^2 + 16\lambda^2)$

 $\mathsf{P}_{\mathsf{D2}} = \mathsf{K}_2 24\lambda \qquad \mathsf{A}_{\mathsf{D2}} = \mathsf{K}_2(6\lambda)^2 \qquad \mathsf{W}_1 \cong 4\mathsf{K}_1\lambda \left(6 + \sqrt{2}\right)$

$$I_{0} = \frac{\omega_{T}}{\frac{C_{OX}K_{1}(48\lambda^{2}+16\lambda^{2})+(C_{SWn}K_{1}24\lambda+C_{BOTn}K_{1}(6\lambda)^{2}+C_{SWp}K_{2}24\lambda+C_{BOTp}K_{2}(6\lambda)^{2})}{2\lambda C_{OX}4K_{1}\lambda(6+\sqrt{2})}}$$

$$I_{0} = \frac{\omega_{T}}{\frac{C_{OX}K_{1}(48\lambda^{2}+16\lambda^{2})+C_{BOT}(6\lambda)^{2}(K_{1}+K_{2})+C_{SW}24\lambda(K_{1}+K_{2})}{2\lambda C_{OX}4K_{1}\lambda(6+\sqrt{2})}}$$

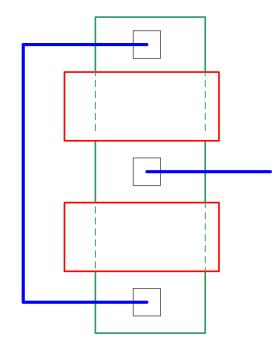

Consider concentric layouts for M₁ and M₂


$$I_{0} = \frac{\omega_{T}}{\frac{C_{OX}K_{1}\left(48\lambda^{2}+16\lambda^{2}\right)+C_{BOT}\left(6\lambda\right)^{2}\left(K_{1}+K_{2}\right)+C_{SW}24\lambda\left(K_{1}+K_{2}\right)}{2\lambda C_{OX}4K_{1}\lambda\left(6+\sqrt{2}\right)}}$$

$$I_{0} = \frac{\omega_{T}}{\frac{(8) + h_{BOT} 4.5(1 + K_{2}/K_{1}) + h_{SW} 3(1 + K_{2}/K_{1})}{(6 + \sqrt{2})}}$$

$$I_{0} = \frac{\omega_{T}}{1.08 + h_{BOT}.61(1 + K_{2}/K_{1}) + h_{SW}0.4(1 + K_{2}/K_{1})}$$

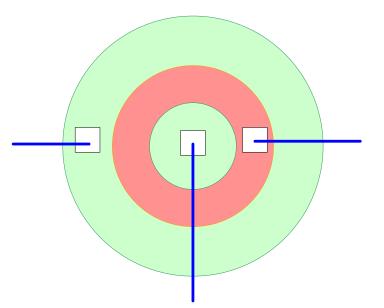
Example: Consider the 0.25u TSMC CMOS Process with W_1 =1.5u and $V_{EB1}=V_{EB2}$


Diffusion parasitics still dominate frequency degradation

SW term probably over-estimated since it is an internal SW capacitance

But a factor of 3 faster with the concentric layout compared to standard layout

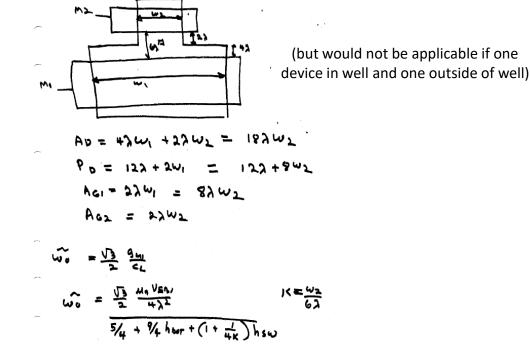
Other layouts for enhancing speed of operation


Goal: reduce area and perimeter on drain

Shared-drain structure

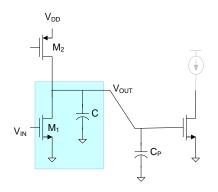
(but would not be applicable if one device in well and one outside of well)

 V_{DD} M_2 V_{IN} M_1 C_P C_P


Circular-concentric structure

Though the reduced size drain structures work very well, CAD support may be limited for layout, simulation, and extraction

Other layouts for enhancing speed of operation


Goal: reduce area and perimeter on drain

n-chand lord, simple Lagout

 $W_1 = 4W_2$

Useful for adding loss or in high-speed gain stages (can add loss with n-channel or p-channel device)

Parameters from .25u TSMC Process

u 3.74E+10 1/(V*sec)

2*lambda	0.25	U	
hsw	0.61	none	
ot	0.32	none	
ı∕up	4.1		

Integrator lo for Special Layouts

file: integrator-speed-comp

Note: Process parameters may be a little optimistic but relative performance should be as predicted

Conventional Layout

numai La	you	•													
VEB1/	κ	W1	W2	SWn	S₩p	BOTn	вотр		Bot comp		Den	VEB1	lo,no d		
VEB2								Total	Total	comp			GHz	GHz	
1	1	0.75	3.075		3.42	0.96	3.94	4.33	4.90	1	10.2	1	95.3	9.3	
1	2	1.5	6.15	0.61	3.11	0.96	3.94	3.72	4.90	1	9.6	1	95.3	9.9	
1	4	3	12.3	0.46	2.96	0.96	3.94	3.42	4.90	1	9.3	1	95.3	10.2	
1	8	6	24.6	0.38	2.88	0.96	3.94	3.26	4.90	1	9.2	1	95.3	10.4	
1	16	12	49.2	0.34	2.84	0.96	3.94	3.19	4.90	1	9.1	1	95.3	10.5	
0.5	1	0.75	0.769		1.54	0.96	0.98	2.46	1.94	1	5.4	1	95.3	17.6	
0.5	2	1.5	1.538		1.24	0.96	0.98	1.85	1.94	1	4.8	1	95.3	19.9	
0.5	4	3	3.075		1.08	0.96	0.98	1.54	1.94	1	4.5	1	95.3	21.2	
0.5	8	6	6.15	0.38	1.01	0.96	0.98	1.39	1.94	1	4.3	1	95.3	22.0	
0.5	16	12	12.3	0.34	0.97	0.96	0.98	1.31	1.94	1	4.3	1	95.3	22.4	
2	1	0.75	12.3	0.92	10.92	0.96	15.74	11.83	16.70	1	29.5	1	95.3	3.2	
2	2	1.5	24.6	0.61	10.61	0.96	15.74	11.22	16.70	1	28.9	1	95.3	3.3	
2 2	4	3	49.2	0.46	10.46	0.96	15.74	10.92	16.70	1	28.6	1	95 3	3.3	
2	8	6	98.4	0.38	10.39	0.96	15.74	10.77	16.70	1	28.5	1	95 3	3.3	
2	16	12	196.8	0.34	10.35	0.96	15.74	10.69	16.70	1	28.4	1	95.3	3.4	
1	1	0.75	3.075	0.92	3.42	0.96	3.94	4.33	4.90	1	10.2	1.5	142.9	14.0	
1	2	1.5	6.15	0.61	3.11	0.96	3.94	3.72	4.90	1	9.6	1.5	142.9	14.9	
1	4	з	12.3	0.46	2.96	0.96	3.94	3.42	4.90	1	9.3	1.5	142.9	15.3	
1	8	6	24.6	0.38	2.88	0.96	3.94	3.26	4.90	1	9.2	1.5	142.9	15.6	
1	16	12	49.2	0.34	2.84	0.96	3.94	3.19	4.90	1	9.1	1.5	142.9	15.7	
0.5	1	0.75	0.769		1.54	0.96	0.98	2.46	1.94	1	5.4	1.5	142.9	26.5	
0.5	2	1.5	1.538	0.61	1.24	0.96	0.98	1.85	1.94	1	4.8	1.5	142.9	29.8	
0.5	4	3	3.075	0.46	1.08	0.96	0.98	1.54	1.94	1	4.5	1.5	142.9	31.9	
0.5	8	6	6.15	0.38	1.01	0.96	0.98	1.39	1.94	1	4.3	1.5	142.9	33.0	
0.5	16	12	12.3	0.34	0.97	0.96	0.98	1.31	1.94	1	4.3	1.5	142.9	33.6	
2	1	0.75	12.3	0.92	10.92	0.96	15.74	11.83	16.70	1	29.5	1,5	142.9	4.8	
2 2 2 2	2	1.5	24.6	0.61	10.61	0.96	15.74	11.22	16.70	1	28.9	1.5	142.9	4.9	
2	4	3	49.2	0.46	10.46	0.96	15.74	10.92	16.70	1	28.6	1.5	142.9	5.0	
2	8	6	98.4	0.38	10.39	0.96	15.74	10.77	16.70	1	28.5	1,5	142.9	5.0	
2	16	12	196.8	0.34	10,35	0.96	15.74	10.69	16.70	1	28.4	1.5	142.9	5.0	
1	1	0.75	3.075	0.92	3.42	0.96	3.94	4.33	4.90	1	10.2	2	190.6	18.6	
1	2	1.5	6.15	0.61	3.11	0.96	3.94	3.72	4.90	1	9.6	2	190.6	19.8	
1	4	3	12.3	0.46	2.96	0.96	3.94	3.42	4.90	1	9.3	2	190.6	20.5	
1	8	6	24.6	0.38	2.88	0.96	3.94	3.26	4,90	1	9.2	2	190.6	20.8	
1	16	12	49.2	0.34	2.84	0.96	3.94	3.19	4.90	1	9.1	2	190.6	21.0	
0.5	1	0.75	0.769	0.92	1.54	0.96	0.98	2.46	1.94	1	5.4	2	190.6	35.3	
0.5	2	1.5	1.538	0.61	1.24	0.96	0.98	1.85	1.94	1	4.8	2	190.6	30.0	
0.5	4	3	3.075	0.46	1.08	0.96	0.98	1.54	1.94	1	4.5	2	190 a	42.5	
0.5	8	6	6.15	0.38	1.01	0.96	0.98	1.39	1.94	1	4.3	2	19 .6	44.0	
0.5	16	12	12.3	0.34	0.97	0.95	0.98	1.31	1.94	1	4.3	2	190.6	44.8	
2	1	0.75	12.3	0.92	10.92	0.96	15.74	11.83	16.70	1	29.5	2	190.0	6.5	
2	2	1.5	24.6	0.61	10.61	0.96	15.74	11.22	16.70	1	28.9	2	190.6	0.0	
2	4	3	49.2	0.46	10.46	0.96	15.74	10.92	16.70	1	28.6	2	190.6	6.7	
2 2	8	6	98.4	0.38	10.39	0.96	15.74	10.77	16.70	1	28.5	2	190.6	6.7	
2	16	12	196.8	0.34	10.35	0.96	15.74	10.69	16.70	1	28.4	2	190.6	6.7	

Note: Significant change in speed with optimal choice of design variables

2*lambda	u.4	15 u						-								
hsw.		it nor						r Spec	ial Lay	outs						
hbot		\$2 nor	16		fjar, inte	Sugar-she	optop-be									
μπίυρ	4.	.1			Marter	Dimension	onranala	er mau ha	a little optio	nistic but re	- California					
								is predicted		Insoc out re	29046					
Joncen	VEB1/ VEB2	ĸ	K2	K2^	WI	W2	SWn	SWp	BOTh	вотр	SW comp Total	Bot com Total	Load Comp	Den	VEBt	lo,no dii GHz
	1	+	4.5		3.7	15.2	0.25	1,19	0,19	4,53	1,44	4.73	1.08	7.24	1	88.3
		2	8.9		6.7	27.5	0.27	1.22	0.43	8.56	1.49	8.99	1.04	11.53	1	91.3
	ŕ	- 4	17.1		12.7	52.1	0.29	1,23	0.91	16.63	1.52	17.53	1.02	20.08	i	93.1
	†	1	4.8		3.7	15,2	0.25	1,19	0.19	4,53	1.44	4,73	1.08	7.24	1.5	132.5
	1	2	8.8		6.7	27.5	0.27	1.22	0.43	8.56	1.49	8.99	1.04	11.53	1.5	138,9
	1	4	17.1		12.7	52.1	0.29	1.23	0.91	18.63	1.52	17.53	1.02	20.08	1.5	139.7
	1	1	4.8		3.7	15.2	0.25	1,19	0.19	4.53	1.44	4.73	1.08	7.24	2	176.6
	1	2	8.9		6.7	27.5	0.27	1,22	0.43	8,56	1,49	8.99	1.04	11.53	2	182.6
	1	4	17.1		12.7	52.1	0.29	1,23	0.91	18.63	1.52	17.53	1.02	20.06	2	186.3
	0.5	12	1.0 2.1		3.7 6.7	3.8 6.9	0.25	0.25	0.19 0.43	0,21 0.45	0.50	0.40 0.88	1.08	1.98 2.48	1	88.3 91.3
	0.5	4	4.1		12.7	13.0	0.29	0.30	0.91	0.96	0.58	1.86	1.04	2.40	1	91.3
	0.5	Ť	1.0		3.7	3.8	0.25	0.25	0.19	0.21	0.50	0.40	1.08	1.98	1.5	132.5
	0.5	ż	2.1		6.7	8.9	0.27	0.28	0.43	0.45	0.55	0.88	1.04	2.48	1.5	136.9
	0.6	4	4.1		12.7	13.0	0.29	0.30	0.91	0.96	0.68	1.86	1.02	3.47	1.5	139
	0.5	1	1.0		3.7	3.8	0.25	0.25	0.19	0.21	0.50	0.40	1.08	1.98	2	174.6
	0.5	2	2.1		6.7	5.9	0.27	0.28	0.43	0.45	0.55	0.88	1.04	2.48	2	122.6
	0.5	4	4.1		12.7	13.0	0.29	0.30	0.91	0.96	0.58	1.86	1.02	3.47	2	186 3
	2	†	20.0		3.7	60.8	0.25	4.94	0.19	77.92	5,19	78.11	1.08	84.38	1	88.3
	2	2	36.4 69.2		6.7 12,7	110.0		4.97 4.99	0.43	142.47 271.58	5.24 5.27	142.60 272.47	1.04	145.18 278,77	1	97.3 91.1
	2	1	20.0		3.7	208.4	0.25	4.99	0.19	77.92	5.19	78.11	1.02	2/8.// 84.38	1.5	13 2.5
	2	2	38.4		8.7	110.0		4.97	0.18	142.47	5.24	142.90	1.06	148.18	1.5	136.9
	2	4	69.2		12.7	208.4		4.99	0.91	271.56	5.27	272.47	1.02	278.77	1.5	139.7
	ĩ	1	20.0		3,7	60.8	0.25	4,94	0.19	77.92	5,19	78.11	1.08	84,38	2	176.6
	2	ż	35,4		6.7	110.0		4.97	0.43	\$42.47	5.24	142.90	1.04	149.18	2	182.6
	2	4	69.2		12.7	208.4	0.29	4.99	0.91	271.66	5.27	272.47	1.02	278.77	2	186.3
Segmen	ted Conc															_
	1	1	4.8	2.3	3.71	16.2	0.25	1.13	0.19	2.05	1.38	2.24	1.08	4.70	1	88.3
	7	2	8.9 17.1	4.35 8.45	6,71 12,71	27.5 52.1	0.27	1.19	0.43	4.06 8.09	1.46 1.50	4.49	1.04	6,99 11,52	1	91.3 93.1
	-	4	4.8	2.3	3.71	16.2	0.29	1.13	0.91	2.05	1.38	2.24	1.02	4.70	1.5	132.5
	ŕ	2	8.8	4.35	6.71	27.5	0.27	1.19	0.43	4.06	1.46	4,49	1.04	6.99	1.5	136.9
	i	- 4	17.1	8.45	12.71	52.1	0.29	1.22	0.91	8,09	1.50	8,99	1.02	11.52	1,5	139.7
	1	Ť	4.8	2.3	3.71	15.2	0.25	1.13	0.19	2.05	1.38	2.24	1.08	4.70	2	176.6
	1	2	8.9	4,35	6,71	27.8	0.27	1.19	0.43	4.06	1.46	4.49	1.04	6,99	2	182.6
	1	4	17.1	8.45	12.71	52.1	0.29	1.22	0.91	8.09	1.50	8.99	1.02	11.52	2	188,3
	0.5	1	1.0	0.4	3.71	3,8	0.25	0.20	0.19	0.06	0.44	0.26	1.08	1.78	1	88,2
	0.5	2	2.1	0,91	6.71	6.9	0.27	0.25	0.43	0.18	0.52	0.61	1.04	2.17	1	91.3
	0.5	4	4.1	1.94	12.71	13.0 3.8	0.29	D.28 0.20	0.91	0.42	0.57	1.33	1.02	2.92	1	93.1
	0.5 0.6	1	1.0 2.1	0.4	3.71 6.71	3.6	0.25	0.20	0.19	0.06	0.44	0.26	1.08	2.17	1.5	132.5 136.9
	0.6	4	4.1	1.94	12.71	13.0	0.29	0.25	0.91	0.42	0.52	1,33	1.02	2.92	1.5	139.7
	0.5	1	1.0	0.4	3.71	3.8	0.25	0.20	0.19	0.92	0.44	0.26	1.08	1.78	2	175.6
	0.5	2	2.1	0.91	6.71	6.9	0.27	0.25	0.43	0,18	0.62	0.61	1.04	2.17	ž	18 .6
	0.5	4	4.1	1.94	12.71		0.29	0.28	0.91	0.42	0.67	1.33	1.02	2.92	2	156.3
	2	f	20.0	9.9	3.71	60.8	0.25	4.89	0.19	38.05	5.13	38.24	1.08	44.45	1	86.3
	2	2	38.4	18.1	6.71	110.0		4.94	0.43	70.31	5.21	70.74	1.04	77.00	1	91.3
	2	4	69.2		12.71		0.29	4.97	0.91	134.86	5.26	135.77	1.02	142.04		93.1
	2	1	20.0	9.9	3,71	8.08	0.25	4.89	0.19	38.05	5.13	38.24	1.08	44.45	1.5	132.5
	2	2	36.4		6.71	110.0		4.94	0.43	70.31	5.21	70.74	1.04	77.00	1.5	136.9
	2	4	69.2 20.0	34.5 9.9	12.71	208.4 6/0.8	0.29	4.97	0.91	134.85 38.05	5.2 6 5.13	135.77 38.24	1.02	142.04 44.45	1.5	139.7 178.6
	2	2	20.0	18.1	6.71	110.0		4.09	0.43	70.31	5.21	70.74	1.04	77.00	2	162.6

Parameters from 0.25u TSMC process

Lossy Integrator

U	3.74E+10	1/(V*sec)	Lossy Integrator
2*iambda	0.25	u	
hsw	0.61	none	Note: Process parameters may be a little optimistic but relative performance
hbot	0.32	0096	should be as predicted.
'up	4.1		File lossy-integrator-speed-comp

	к	W2	W1			BOTn	ВОТр	SW comp Total	Bot comp Total	Load comp	Den	VEB1	lo,no dif GHz	lo GHz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P-channe													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												r -		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												=		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2													
2 1 50 1 46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.52 2 81.5 28.3 4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 2 81.5 28.3 P-channel Load, Concentric Layout 1 3.80 3.71 0.25 0.284 0.144 0.206 0.50 0.40 2.18 3.06 1 37.8 26.7 2 6.87 6.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.55 1 39.1 23.3 4 13.02 12.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 1.5 58.6 34.8 4 13.02 12.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 1.5 58.6 34.8 2 6.87 <td></td> <td>-</td> <td></td> <td></td>												-		
4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 2 81.5 29.9 P-channel Load, Concentric Layout 1 3.80 3.71 0.25 0.254 0.194 0.206 0.50 0.40 2.18 3.06 1 3.78 26.7 2 6.87 6.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.55 1 39.1 23.3 4 13.02 12.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 1 3.98 1.5 58.6 4.0.1 2 6.87 6.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 1.5 58.6 34.9 4 13.02 12.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 2 78.1 46.5 2														
P-channel Load, Concentric Layout 1 3.80 3.71 0.25 0.264 0.194 0.206 0.50 0.40 2.18 3.08 1 37.8 26.7 2 6.87 6.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.55 1 39.1 23.3 4 13.02 12.71 0.29 0.296 0.507 0.955 0.58 1.88 2.07 4.52 1 39.8 18.3 1 3.80 3.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.55 1.5 58.6 34.9 4 13.02 12.71 0.29 0.296 0.50 0.40 2.18 3.08 2 75.6 53.5 2 6.87 6.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.56 2 78.1 46.5 4 13.02 12.71 0.29 </td <td></td>														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3.00	2.93	0.77	0.78	0.96	89.0	1.55	1.94	2.03	5.52	2	81.5	29.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P-channe													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3.80	3.71									1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6.87										1	39.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3.80	3.71					0.50	0.40	2.18	3.08	1.5	56.7	40.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6.87	6.71	0.27	0.28	0.429	0.454	0.55	0.88	2.11	3.55	1.5	58.6	34.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		13.02	12.71	0.29	0.296	0.907	0.955	0.58	1.86	2.07	4.52	1.5	59.8	27.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3.80	3.71	0.25	0.254	0.194	0.205	0.50	0.40	2.18	3.08	2	75.6	53.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	6.87	6.71	0.27	0.28	0.429	0.454	0.55	0.88	2.11	3.55	2	78.1	48.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		13.02	12.71	0.29	0.296	0.907	0.955	0.58	1.86	2.07	4.52	2	79.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Chann	el Load, Sin	sple Layou	t										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.76	0.72	1.25	2.73	1	66.0	30.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1.50	6.00					0.69	0.72	1.25	2.66	1	66.0	31.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3.00	12.00					0.65	0.72	1.25	2.62	1	66.0	31.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.75	3.00						0.72	1.25	2.73	1.5	99.0	45.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1.50	6.00					0.69	0.72	1.25	2.66	1.5	99.0	46.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.00	12.00					0.65	0.72	1.25	2.62	1.5	99.0	47.3
4 3.00 12.00 0.65 0.72 1.25 2.62 2 132.0 63.0 N-Channel Load, Concentric Layout 1 3.71 14.83 0.31 0.24 1.35 1.90 1 61.2 43.4 2 6.71 26.63 0.34 0.54 1.30 2.18 1 63.3 37.8 4 12.71 50.83 0.34 0.54 1.30 2.18 1 64.5 29.8 1 3.71 14.83 0.31 0.24 1.35 1.00 1.5 91.8 65.1 2 6.71 26.83 0.34 0.54 1.30 2.18 1.5 94.9 56.7 4 12.71 50.83 0.35 1.13 1.28 2.77 1.5 96.8 64.7 1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 26.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71	1	0.75	3.00					0.76	0.72	1.25	2.73	2	132.0	60.4
4 3.00 12.00 0.65 0.72 1.25 2.62 2 132.0 63.0 N-Channel Load, Concentric Layout 1 3.71 14.83 0.31 0.24 1.35 1.90 1 61.2 43.4 2 6.71 26.63 0.34 0.54 1.30 2.18 1 63.3 37.8 4 12.71 50.83 0.34 0.54 1.30 2.18 1 64.5 29.8 1 3.71 14.83 0.31 0.24 1.35 1.00 1.5 91.8 65.1 2 6.71 26.83 0.34 0.54 1.30 2.18 1.5 94.9 56.7 4 12.71 50.83 0.34 0.54 1.30 2.18 1.5 94.9 56.7 4 12.71 50.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 26.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71	2	1.50	6.00					0.69	0.72	1.25	2.66	2	132.0	62.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3.00	12.00					0.65	0.72	1.25	2.62	2	132.0	63.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Chann	el Load, Co	ncentric La	yout										
4 12.71 50.83 0.36 1.13 1.28 2.77 1 64.5 29.8 1 3.71 14.83 0.31 0.24 1.35 1.90 1.5 91.8 65.1 2 6.71 26.83 0.34 0.54 1.30 2.18 1.5 94.9 56.7 4 12.71 50.83 0.35 1.13 1.28 2.77 1.5 96.8 44.7 1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 25.83 0.34 0.54 1.30 2.18 2 122.4 86.9 2 6.71 25.83 0.34 0.54 1.30 2.18 2 126.5 75.6	1	3.71	14.83	-				0.31	0.24	1.35	1.90	1	61.2	
1 3.71 14.83 0.31 0.24 1.35 1.90 1.5 91.8 65.1 2 6.71 26.83 0.34 0.54 1.30 2.18 1.5 94.9 56.7 4 12.71 50.83 0.35 1.13 1.28 2.77 1.5 96.8 44.7 1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 26.83 0.34 0.54 1.30 2.18 2 122.4 86.9 2 6.71 26.83 0.34 0.54 1.30 2.18 2 126.5 75.6	2	6.71	26.83					0.34	0.54	1.30	2.18	1	63.3	37.8
1 3.71 14.83 0.31 0.24 1.35 1.90 1.5 91.8 65.1 2 6.71 26.83 0.34 0.54 1.30 2.18 1.5 94.9 56.7 4 12.71 50.83 0.35 1.13 1.28 2.77 1.5 96.8 44.7 1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 26.83 0.34 0.54 1.30 2.18 2 122.4 86.9	4	12.71	50.83					0.36	1.13	1.28	2.77	1	64.5	29.8
2 6,71 26,83 0.34 0.54 1.30 2.18 1.5 94.9 56.7 4 12,71 50,83 0.36 1.13 1.28 2.77 1.5 96.8 44.7 1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 26.83 0.34 0.54 1.30 2.18 2 126.5 75.6									0,24		1.90	1.5	91.8	
4 12.71 50.83 0.35 1.13 1.28 2.77 1.5 96.8 44.7 1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 26.83 0.34 0.54 1.30 2.18 2 126.5 75.6									0.54	1.30	2.18	1.5	94.9	56.7
1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4 86.9 2 6.71 25.83 0.34 0.54 1.30 2.18 2 126.5 75.6	4													
2 6.71 26.83 0.34 0.54 1.30 2.18 2 126.5 75.6														86.9

Stay Safe and Stay Healthy !

End of Lecture 35